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Machinery noise and vibration is an important issue
in many applications, including spacecraft, aircraft, and

"naval vessels. A classic approach to ameliorating the

effect of such disturbances is isolation at a vibration
transmission bottle neck; the machinery mounts. Passive
approaches are widespread, and introduce no risk of
instability. Active techniques promise increased isolation
performance, but introduce the risk of unstable interaction
with system dynamics, particularly resonant vibrations of
the machine or of the supporting structure.

This paper focuses upon a specialization of active
isolation; isolation of nearly time-periodic disturbances.
In this situation one can achieve significant isolation
performance with minimal risk of instability. The paper
demonstrates, with aid of a simple case study, that the
safely achievable performance is limited by three
important factors: 1) The level of passive damping present
in the unmodeled resonant response of the mechanical
system (supporting structure and machine). The
importance of passive damping is most concisely
quantified by the modal overlap; the ratio of modal
bandwidth to modal spacing. 2) The pole-zero structure of
the transfer function from the actuators to sensors at
frequencies near the disturbance frequency. For rigid
machines, the single most important parameter is machine
mass relative to effective modal mass. 3) The spectral
bandwidth of the offending disturbance. Slowly time-
varying quasi-periodic disturbances are easiest to isolate
by the techniques studied. For the case study, attention is
restricted to a rigid “machine” and single axis motion.
The paper develops modeling analyses, discusses sensor
and actuator choices, discusses control algorithms, and
presents the results of an experimental study.

1 Introduction

Vibration is a problem in many applications,
including helicopter gearboxes at 1500 Hz [1], submarine
machinery at many harmonics [2], and spacecraft
momentum wheels at many harmonics with important
speed changes [3]. These and other potential applications
of active vibration isolation have in common three basic
features that one must consider in the design of an
isolation system: disturbance spectrum, characteristic

structural dynamics, and machinery mounting. The
disturbance spectrum is typically broadband with “spikes”
at some characteristic frequency ,usually that of the shaft,
and harmonics [4, 5, 6]. A typical measurement of this
spectrum is shown in Fig. 1 (5). A second feature these
examples have in common is the structure to which the
machine is mounted. In comparison with the machine, the
structure is flexible, as it has its initial eigen-frequencies
well below those of the machinery itself [4]. Below the first
machine-eigen-frequency, the system can be modeled as a
rigid mass attached to a flexible substructure. The final
commonality of these examples is in the mounting of the
machinery to the structure. Machinery mounts act as a
“bottle neck” in the disturbance transmission path. This
makes them attractive locations to place devices that limit
disturbance transmission.
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Figure 1
Typical Machinery Spectrum

The ideal vibration isolating mount would provide
stiffness to support the machine at frequencies below some
performance bandwidth so that low frequency loads are
transmitted. At frequencies above the bandwidth, it would
be totally compliant with the assumption that vibrations
at these higher frequencies are noise and should not be
transmitted to (or from) the structure. This ideal stiffness
function is shown in Fig. 2. Attempts to develop mounts

whose stiffness functions offer a compromise to that of the
ideal mount are categorized as active or passive.
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1.1 Passive Techniques

Traditional passive devices are separated into two
categories: “soft springs” and “tuned” isolators. The use
of soft springs whose stiffness varies weakly with
frequency (visco-elastic) or with relative deflection (non-
linear) is typical. The minimum stiffness of the spring is
dictated by performance requirements and clearance
specifications,

“Tuned” passive isolators contain internal
resonances which produce notches in the stiffness function.
Every notch requires an additional degree of freedom in
the mount which adds complexity, mass and occupies
volume. Furthermore, mounts with internal resonances are
stiffer at other frequencies. In general, passive techniques
are limited by physical constraints and complexity, and
cannot be readily tuned to match a time-varying machinery
spectrum. ’

1.2 Active Techniques

These limitations make active control of the mount
properties an attractive alternative. A feedback system
may be designed to make the mount behave like the tuned
or soft spring passive isolator. Additionally, more
complex feedback systems can be employed with little
mass or volume penalty. However, the introduction of
feedback systems introduces an external energy source
and therefore the possibility of instability.

Active algorithms are categorized as narrow or
broad band. A broad band implementation can yield a
mount with a stiffness function approximating that of the
ideal mount. Thisis a particularPy difficult task in that a
detailed knowledge of the dynamic characteristics of the
structure (plant) may be required to avoid the risk of
unstable control-structure interaction (7]. Unfortunately,
modeling errors prevent certain knowledge of the plant.
Narrow band implementation yields a mount which is
significantly compliant only over a small range in
frequency. Here, only information of the disturbance and of
Fenera] characteristics of the plant dynamics are required

4]. The resulting stiffness function is shown in Fig. 3. The
“notches” in this stiffness function can be controlled to
occur at the machine operating frequency and harmonics,
which may vary in time.
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This paper focuses upon such narrow band active
isolation, predicting analytically the degree of
performance robustly achievable in the presence of
unmodeled plant resonances. The analysis quantifies the
importance of passive damping, modal overlap, and pole-
zero spacing. These quantities can be predicted with

reater confidence than can details of the structural
ynamics.

2 Theory

In this section the theory behind single-axis active
isolation is developed. First the actuator and sensor are
defined, enabling plant determination. Then
compensation is presented and discussed.

2.1 Actuator

Given that active control has been chosen as a
solution or to augment a passive system, one must decide
where to place the actuator. Two basic possibilities exist:
in series with the load path and in parallel with the load
path (Fig. 4). If the actuator is placed parallel to some
other force carrying member, it must overcome the stiffness
of the force carrier to actuate. However, it does not have to
bear the entire static load of the machine. If the actuator is
placed directly in the load path, it must bear the load of the
machine, but only has to overcome its own stiffness in
actuation. Thus, stiffness and actuation authority are
traded off against each other.
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Figure 4
Parallel and Series Mount Enhancement

Because acoustic-band disturbances are the target of
this investigation, relatively high bandwidth is an actuator
requirement. This inherently eases the requirements on
actuation amplitude because vibration amplitude typically

decreases proportional to ;15 . In the case of machinery
noise, amplitudes on the order of fractional milli-inches
can be expected in the audible bandwidth. So, the actuator
requirements boil down to high bandwidth, low amplitude.

These factors point to the use of piezo-ceramic
material. Often used in applications requiring bandwidths
on the order of MHz, piezo-electric crystals more than meet
the bandwidth criterion. Displacement in this type of
device is limited by a maximum strain (about 104 €). Eq. 1
characterizes the electro-mechanical property of a one-
dimensional piezo-electric material. ere, relative
deflection, Ax, is written in terms of an applied external
force, f, the displacement per voltage coefficient, gl, the
applied voltage, V, and the stiffness of the material, k.
The piezo mass is ignored, since it is small compared to
that of the machine. Refer also to Fig. 5 for a graphical
illustration.
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Figure 5 .
Piezo-Ceramic Electro-Mechanical Coupling
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The piezo-electric stacks used for this project are
rated at a load-free displacement of 0.5 milli-inches, which
meets the amplitude requirement. Also, with a stiffness
comparable to that of aluminum, placement in series with
the load path presents no major problems, although
tensional loads must be avoided.

2.2 Sensor

With the actuator chosen, the sensor requirements
can be defined. The possibilities that arise are
transmitted force, relative motion, and absolute motion.
Here, motion is a general category which includes
acceleration, velocity, and displacement measurements.
Relative motion (mount elongation) is easy to measure but
not useful for isolation. Acceleration of the substructure at
the mount location is a useful measurement, but sensor
noise floor considerations suggest unacceptable
performance limitation. Force transducers in the load path
were chosen for this project.

A look at tﬁe direction of isolation offers an
additional argument to sense transmitted force. Sievers
[4] states that if the control loop acts to drive force
between the machine and structure to zero, vibration is
isolated in both directions. This is to say that machine
vibrations are not transmitted to the structure and
structural vibrations are not transmitted to the machine.
If, on the other hand, motion is driven to zero, isolation
takes place in one direction only.

2.3 Plant

With the actuator-sensor pair defined, the plant can
be considered. Attempts at modeling the pYant are
rrohibitive for at least two reasons. First, the structure is
ikely to be physically complex and a multi degree of
freedom finite element model would be necessary to

determine the locations of poles at high frequencies of
interest. Second, as frequency increases, many
assumptions that would be mage in such an analysis would
break down. Thus, the expected error would increase with
frequency.

_However, “general characteristics” of the plant are
- sufficient for robust narrow band control design. These
general characteristics are derived in section 2.3.1. An
assumption used in the derivation is that the plant model
has alternating poles and zeros. The chosen sensor-
actuator pair are co-located, but not dual; consequently, it
cannot be assumed that the plant transfer function has
alternating poles and zeros. The following discussion
provides a proof showing that even though the sensor-
actuator pair are not dual, the plant exhibits the necessary
pole-zero pattern.

2.3.1 Guaranteed Properties of Flexible Structures

There are certain properties of the dynamics of any
linear flexible structure that can be exploited without
specifically modeling its dynamic response. A generic
representation of the driving point compliance fi.e.
position to force transfer function) of any structure is:

H[T(1 - 2)

x(s) _ =t
=3
II}( p‘) (2)

F(s) ~
where zj and pj are the complex zeros and poles,
respectively, and H is a real constant.

The compliance transfer function of an undamped
structure is guaranteed to have alternating poles and
zeroes on the imaginary axis of the s-plane [8]; its phase
alternateg between 00 and -1800. The pole-zero pattern of
a damped structure is somewhat more complex. If the
damping is hysteretic (complex modulus) and all materials
in the structure have identical loss factors, then the poles
and zerces alternate a long a line parallel to the
imaginary axis. If the damping is viscous and
proportionally distributed [9], then the complex roots
alternate in magnitude and the alternating pole-zero
structure is preserved. If the damping is further restricted
to be both proportional and modally uniform, the
alternating poles and zeroes are aligne aloni a line in
the Laplace plane. These possibilities are sketched in Fig.
6. Interesting bounds on the zero locations with respect to
the pole locations are derived in Ref. {10] for SISO and
MIMO structural dynamic systems.
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Figure 6
Pole-Zero Patterns of Compliance for Different Damping
Mechanisms

The remainder of this paper exploits a characteristic
that all these patterns exhibit in the case of light damping;
the pole-zero pattern of a lightly damped structure differs
from that of the undamped structure only in the real part of
the corresponding roots. A first-order perturbation
argument [11] shows that the imaginary part is
unchanged. Unfortunately, the degree to which each pole
and zero is damped depends upon details of the damping
mechanisms present, and upon their distribution in the
structure. A typical flexible structure will have damping
ratios, between .05 and .005. This corresponds to
structures with roots in the region between the radial lines
at .860 and 2.86° from the complex axis of the Laplace

lane. This small radial variation in pole-zero placement
eads one to believe that an analysis for a system with
either of the three damping mechanisms listed in Fig. 6
would show similar results.



2.3.2 Pole-Zero Pattern of Flexible Machine Mounted
on Flexible Structure

Structural control designers normally work with
sensor-actuator pairs that are dual and essentially
collocated. The advantage of a dual-collocated pair is that
the undamped plant transfer function is assured to have an
alternating pole-zero pattern on the complex axis of the
Laplace plane; its phase remains within a 180° range.
This is important in structural control since other sensor-
actuator configurations typically result in non-minimum
phase zeroes or pole-zero patterns that don't alternate
{e.g. two neighboring poles together on the complex axis

with no zero in the interval connecting them); both leading
to more difficult control situations.

The sensor-actuator pair considered for isolation is
a force transducer that senses force of the actuator on the
structure, and a piezo-actuator whose control input is
voltage. The pair are collocated but not dual, therefore,
there is no general result that predicts the phase
characteristics of the plant transfer function. In the
following analysis, it will be shown that even though the
chosen sensor-actuator pair are not dual, they still exhibit
the characteristic alternating pole-zero pattern of a
collocated-dual pair. A force £agram describing the
system is shown in Fig. 7. The equilibrium equations are:

Fi=Fp (3)
Fa=-Fp (4)
F ext
machine }
A 12
F
P i X
structure }
Fl
Figure 7

Force Diagram of Machine Mounted on Structure

Eqs. 5 and 6 are generic representations of the
compliance transfer function at the structure-actuator
interface and the machine-actuator interface, respectively.

x,(5) ng(l— EST)

F&) ™~ =
)

(5)

F 65) L=
2 szil}(l i ﬁil) (6)

where H1 and Hg are positive constants.

Egs. 1, 3 and 5 can be combined to form a general
expression for the plant transfer function between
regulated output and controlled input:

: oI 30 7)
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The variables zj, pj, zj, and pj can be replaced by

Jwzi, Jwpi, JWZi, jwpi, respectively, when both the structure
and machine are undamped. The relative locations of the
poles and zeros can be determined since the numerator and
denominator of Eq. 7 are both real. For the undamped
case, the compliance transfer functions are guaranteed to

have alternating pole-zero patterns, thus, wzj < wpj <

Wz(i+1) and wzj < Wpi < Wz(i+1). To determine the root
locations, the denominator is written as a real function of

w and set equal to zero:

- 2y = 2 o s (.
o I ) B (2]
esfl-(@ ()
Zel (%) i (m’:) 8)

The above equation can be rewritten in a more useful form
for graphical solution:

i) | )
“-3)) | A

The right hand side of Eq. 9 is the compliance
transfer function of the undamped structure and is plotted
in Fig. 8. The left hand side of Eq. 9 is the compliance
transfer function for the undamped machine plus an
additional offset factor. This function is plotted in Fig. 9,

using the requirement that the values of wzj and wpj
alternate with increasing frequency (i.e. wz < Wpi <
wz(i+1)). The roots of the plant transfer function are at the
values of w where these two plots overlap.

! P, Py Py

Figure 8
Right-Hand Side of Eq. 9 Plotted as a function of @
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Figure 9
Left-Hand Side of Eq. 9 Plotted as a function of w



Since the zeros of the plant transfer function occur at

©pi and wpj, a graphical proof can easily be sketched that
sFElows an alternating pole-zero pattern of the plant

.Y
transfer function, * 2

T .

The preceging analysis predicts an alternating
pole-zero pattern, and bounds the plant phase between 00
and 180°. The average gain trend and average phase
depends upon the details of the pole-zero spacing, but are
related by the Bode Gain-Phase relationship. Given that
the phase is positive for all w, and the absence of non-
minimum phase zeros, the magnitude must increase with
an average slope of:

d[ 20Log(mag)] |

d[Log ()] IAVg

20dB [ AvgPhase }
" Decade L 90°

(10)

The average slope is a function of pole-zero sEgaci'ng and is
bounded between zero and 40 dB/Decade. This is seen in
the measured plant transfer function (Fig. 10).
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Measured Plant Transfer Function

2.4 Compensation

Fig. 11 s a block diagram of the closed loop system.
Here, the plant, G(s), converts voltage applied to the piezo-
actuator into voltage as output by the force transducer
which is summed with the disturbance to produce force
transmitted, Y(s). The compensator, C(s) is fed the output
of the force transducer and provides the input to the piezo-
actuator. Note that the input, X(s), to the control loop is
zero, as this is the desired amount of force transmitted to
the structure,

)

O—3

o e
T +
C(s)
Figure 11

Control Block Diagram

The relationship between Dis) and Y's is:

o . |
Y(S)_D(S)“1+Cv(_5)C(s) aL

In order for D(s) to have a negligible influence on Yis), the
magnitude of G(s)C(s) must be large compared to one at
frequencies at which the disturbance is significant. The
loop must also be stable.

For a single harmonic disturbance, a compensator

consisting of a second order pole with damping ratio Te.
and natural frequency wc satisfies these requirements. At

frequencies below wc, the phase of the loop function is the
same as the uncompensated plant, bounded by +180 and
zero degrees. That the phase is so close to 180 degrees is
not a pressing problem because phase lead errors are

rarely encountered. At frequencies above we, the phase of
the loop function is always %reater than -180 degrees.
Thus, the average magnitude slope of the plant is less than
40 dB/Decade, the loop function magnitude rolls off. The
phase bound of -180 deg implies that the system is
imconditionally stable in the absence of unmodeled phase
ags.

Physical limitations of the sensor provide
additional roll off. At high frequencies, the wave length of
the structure approaches the length of the machinery mount
footprint. Above these frequencies, the force transducer can
no longer be considered a point measurement device.
Instead, it acts as a distributed sensor, physically
averaging load which varies over its surface. The net effect
is that the transducer is incapable of passing on very high
frequency load measurements. This manifests itselfin the
magnitude of the plant function (Fig. 10) as an abrupt roll-
off without phase lag. Thus, the magnitude of the plant
function does not increase without bound. This
phenomenon suggests that the the size of the mount be
designed as part of the control problem, and suggests the
use of a distributed sensor.

2.5 Control-Structure Interaction
2.5.1 Stability Robustness
Because of the bounded property of the plant phase,
phase margin can independentf; describe the robustness of
the closed loop system. Here, phase margin is defined as
the difference between the most negative excursion in
phase of the loop transfer function and -1809. The phase of
the loop transfer function, G(s)C(s), is the sum of the phase
of the compensator, C(s), and the phase of the plant
transfer function, G(s). Therefore, the phase margin of the
loop transfer function can be divided into the sum of two
parts; one contribution from plant dynamics and one
contribution from compensator dynamics. This is shown
graphically in Fig. 12. Here, Pl&nis used to denote the
total phase margin, PMp to denote the phase margin
contribution from the plant transfer function, and PM¢ to
denote the contribution from the compensator.
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Phase of Compensator, Plant, and Loop Transfer
Functions



2.5.2 Modal and Pole-Zero Overlap
The phase margin due to the plant dynamics is a
function of two variables; modal overlap, M, and pole-zero
overlap, R. These quantify the similarity of high PMp,
common to plants that are heavily damped and those which
exhibit modes closely spaced in frequency. Modal overlap

Lwg

: r
is defined by . and pole-zero overlap is defined by 3% ,
o)

where Ly is the real part of the roots of the structure, € is

zero-pole spacing, and Aw is pole-pole spacing. The phase
margin determined by the contribution of only two poles
and two zeroes is listed in Eq. 12. PMp is calculated by
summing up the two angles, 8] and 82 pictured in Fig. 13.
This expression is valid for plants with low modal overlap.
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Figure 13
Phase Margin Calculated from Plant Transfer Function

For plants with higher modal overlap, contributions
from more poles and zeroes are necessary for an accurate
prediction of PMp. The expression listed in Eq. 13, is valid
for any value of M or R.

P! =2“. -t R -M
M ,Eom (RM+—12-(1—¥R-_)+ %(n-o—nz))(w)

The number of terms, ng, necessary to get an
accurate value of the Phase Margin is a linear function of
modal overlap. It is calculated from the expression

M
tan(p)—% .

terms due to poles and zeroes outside a region in the
Laplace plane described by the piece of pie whose borders

are the lines at p radians from the positive complex axis

and -p radians from the negative complex axis.

Two important results can be gathered from Eq. 13.
High modal overlap implies a large phase margin. This is
a very interesting and useful result since plants with high
modal density are normally difficult to model accurateF ]
consequently, model-based control designs may provicia
only minimal, if any, stahility-robustness margins.
Another factor that affects phase margin is pole-zero
overlap, R. When R is large, the phase margin also
increases. The plant transfer function has a much tighter
bound on phase excursions when the plant has high modal
or high pole-zero overlap. These two results can be
restated in terms of stability-robustness. If either R or M
is large, the controller can be operated with high gain since
the control design is robust with respect to unknown or
unmodeled plant dynamics.

This method for calculating ng ignores all

Root locus provides a graphical visualization of how
overlap provides stability robustness. [t also sets the
stage tor considering the choice of compensator damping.
Two systems are shown in Fig. 14: one with low overlap
(system A), and one with higher overlap (system B). In this
comparison, overlap is increased by (hysteretic) damping
only. In both systems, a high-frequency pole is placed at «)
on the real axis to model lags due to amplifiers. Near and

above o], the lag decreases the locus branch departure
angles.
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Figure 14
Root Locus Comparison of Overlap

Because the difference in damping between the two
systems does not appreciably change the shape of the
locis, the approximate radius, r, the high frequency
branches take on their way to associated zeros is virtually
the same for both systems. Also, the gain required to move
the closed loop poles to a given position on the locus is the
same for both systems. However, system A has poles

closer to the jw axis than system B. With enough modal
overlap, system B has infinite gain margin. A similar
graphical argument can be made if instead of increasing
the damping of system B, the poles of system B are more
closely spaced than in system A (assuming the poles of
systems A and B have equivalent real parts). The gain
required to cause instability would be greater for system B
than for system A. This is due to the added stability
robustness provided by the closer spaced poles.

2.5.3 Machine Mass and Stability Robustness

For a rigid machine, it is interesting to note how the
ratio of machine mass to modal mass effects overlap and
thus stability robustness (7]. If the mass of the machine is
insignificant as compared to the plant modal mass, pole-
zero frequency separation will approach zero. So, as
machine mass approaches zero, R approaches infinity and
the system gets very robust since the plant transfer
function exhibits pole-zero cancellation. In this case a
voltage applied to the piezo is incapable of exciting any
force because it has not%ing to react against; the flexible
modes are uncontrollable.

On the other hand, as the mass of the machine
becomes much greater than the plant modal mass, plant
poles and zeros tend towards maximum separation. In the
extreme of infinite machine mass, the plant transfer
function becomes a measure of unloaded structural
resonances. As machine mass approaches infinity, R
approaches Rmin, the unloaded plant pole-zero overlap,
and robustness is minimized. In this case, plant poles
occur at unloaded driving point zeros, and plant zeros occur
at unloaded structural resonances.



2.5.4 Effects of Sensor Choice on Stability
Robustness

Some interesting insights about choice of control
output can be ascertained from the previous section. If
position is chosen as the measured output, the alternating
pole-zero pattern of the plant transfer function is still a
result. The poles of the plant transfer function are the same
as for the fjc))rce sensing case, but the zeroes of the plant
transfer function are different. The zeroes of the plant are
the zeroes of the compliance functions. For the case when
the machine is rigid, the factor R is smaller when force
sensing is used. For at least this case, force sensing
should provide a larger stability margin than position
sensing. This supports the conclusion made above, that
force sensing appears to be the best choice.

2.6 Compensator Parameters

Because no knowledge of exact frequency locations
of plant poles or zeros is assumed, plant interaction with
the disturbance cannot be a factor in compensator tuning.
Logically, then, the natural frequency of the compensator

should be tuned to the frequency of the disturbance.

Compensator damping, {¢, and gain, K, then are the
only parameters in question. At the disturbance frequency,
higher gain implies better performance (Eq. 11).

Compensator gain at w¢ being,

: K
CompGain | =
w . 2; . (14)
immediately suggests that for a given loop gain, K, best

performance is realized for {c as small as possible.
Stability, however, limits K. Let us assume zero damping
for the compensator pole. For a plant with light damping
as well, the departure angle of a loop function pole at w is
approximately:
8, = [F7eros —Fpoles 1180°-90° - ¢
H—/
Below o, (15)

Where ¢ is the angle contribution from unmodeled lags
-If the compensator pole is above a plant pole, its

departure angle is 90-¢ deg. If it’s damping ratio is zero,
then, any finite gain sends it into the right half plane. If,
on the other hand, the compensator pole is below a plant

pole, its departure angle is -90-¢ deg. In this case, the
plant pole causes instability and does so as a result of
some finite gain. In the limit as the plant becomes well

damped and plant phase approaches 900-¢, the

compensator pole departure angle approaches -1809-¢,
and the system is always stable. This is the simplest
plant to control.

Recall that the compensator pole is tuned to some
pre-determined disturbance frequency. Thus, the location
of the compensator pole with respect to the plant poles is

own. For this reason, maximum stable performance is
realized with the compensator damping set to that of the
plant. In this case, the pole that goes unstable cannot be
distinguished as either compensator or plant, resulting in
a kind of performance-stability compromise.

2.7 Characterization of Performance

Performance of a controller designed for isolation is
defined as the attenuation achievable at the frequencies of
the disturbance. Performance, like stability-robustness, is
dependent on both compensator dynamics and plant
dynamics.

The dependence on plant dynamics is apparent from
Eq. 7. Potential performance is greatest if the disturbance
frequency is close to a zero of the plant, and worst when it

1s close to a pole of the plant. When damping is added to
the structure, the performance is enhanced at the poles and
degraded at the zeroes. Performance as a function of
compensator dynamics was described by Eq. 8: high gain
and low compensator damping ensures high performance.

3 Compensator Implementation
~ The desired input output relationship of this
classical circuit is:

PP p {16)

3.1 Classical Implementation

This function was implemented in two ways. First,
it was written in control-canonical form and assembled on
a proto-board using operational amplifiers, capacitors, and
resistors. In this implementation, the compensator is
tuned to a predetermined disturbance frequency and is
thus useless for automatic tracking of a time-varying
disturbance.

32 Self Tuning Implementation

A second, more interesting design exhibited the
property of self tuning. This frequency following circuit
design (12, 13, 14, 15, 16] is unique in that its transfer
function is that of a second order pole whose imaf’inary
part is set by the frequency of a reference signal pair,

cos(wt) and sin(wt). Fig. 15 is a block diagram of this
analog algorithm.

cos{wt)
| 1
®_" s+a |
Input T®) b3 QOutput
x(1), X(s}) 2 2 | y(t), Y(s)
S+a
sin{ wt)
Figure 15

Frequency Following Compensator

Here, the input on the left is multiplied by sin(wt)

and cos(wt). Next, the signals are low-pass filtered by a
ole at s=-a. If a=0, the process becomes a sine and cosine
ourier transform at a single point in frequency space.

Next, the now virtually DC signals are multiplied by a 2X2

rotation matrix, T(@). Eq. 17 shows this orthonormal

matrix in terms of 8, the angle by which T(8) rotates the

vector:

T(0) = Cf)s (8) -—sin (9)]

sin (8) cos(8) an
After the signals have been “rotated” in phase, they are
converted back into the time domain by re-multiplication
by sin{wt) and cos(wt) and summed, creating the output
signal.

A time domain analysis offers a more rigorous and
revealing description of this algorithm. The transfer
function is derived using the property that the transfer
function of any linear, time invariant system is the
Laplace transform of the impulse response [17] :



Y{s) (s +a)cos(B) ~wsin(8)
i - 3
Xts) (s+a) + 0)2 (18)
which has poles and a zero at:
Poles at s=—-a +jw

Zero at s=-[a+ wtan(8)] (19)

The pole locations can also be expressed in terms of
damping ratio and natural frequency:
- 2
= Vat+o (20)
4

=, (21)

The ability of this compensator to track in frequency
presents an additional facet to discuss. Tracking is very
attractive in applications where the disturbance frequency
changes. Even motors designed to operate at some
nominal frequency will vary somewhat. Although major
transient changes in frequency are not likely to occur in
such motors, they can be expected in a variety of
applications.

Interestingly, this compensator exhibits
instantaneous response to changes in reference frequency.
This is seen in Eqs 22 and 23, the response to a step in
frequency applied to both the input signal and reference
signal at t=T [17]. The response is separated into the
steady state and transient parts.

(V)

1 —%&Mmﬂ—mﬁﬂmo
Ysg= 3, Cos(wt) +

al+ 4 (22)

ve={§(ar - ar Fosv - i@ - o sin(m feP

where n=m2(l—2T)—¢ (23)

No amplitude effects are seen because the input
function is restricted to be continuous. The normalized sum
of Eqs. 22 and 23 is plotted in Fig. 16. Here, frequency is
stepped from 1 Hz to 10 Hz, and a=.01 Hz.
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Normalized Response to Step in Frequency

Note that in application, the input signal comes
from a sensor, and is thus athe result of filtering a
disturbance through an unknown dynamic plant. The result
is that the input and reference signal are unlikely to
change together. Rather, the reference signal, taken from a
shaft encoder, will lead the sensor signal.

4 Experimental Results

Results of experimental measurements are
presented in this section. The report begins with a
description of the apparatus, followeg by a report of the
performance metric used. Next data collected using the
classical controller is presented and discussed. Finally,
results taken with the frequency follower as the
compensator are shown.

LA 4

4.1 Apparatus

A cross-section of the apparatus is shown in Fig. 17
Although' not shown to scale, it represents the featurges of
the experiment. At the top is the shaker which is supported
by an aluminum bracket attached to an I-beam support
structure. The support structure is bolted to a cinder-block
wall. The shaker is connected to the load cell via threaded
rod. The load cell is fastened to the actuator assembly,
which is fastened to the flexible plate. This is bolted at the
corners to a 15 x 15 x 0.5 in. aluminum base plate. The

base plate is bolted to the same I-beam structure as the
shaker.

j@——em—— Shakaer

Threaded rod
Accelerometer

Load Cell Actuator assembly

Strain Gauge

\1 o [ lexible Plate

Load Cell gy

W W W W L W W L A AL R S
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Acceleromaeter °Rigid” Base Plate

Figure 17
Apparatus

4.2 Performance Measurement

Before data can be collected, a performance metric
must be chosen. Because the goal of control in this
application is to reject disturbances, so that no force is
transmitted to the structure by a vibrating machine, the
command signal in the block diagram of Fig. 11 is zero.
Comparison of transmitted force with zero conveys little
information, so a transmissibility function measured under
open and closed loop conditions is used to determine

erformance. Although the numerator of this transfer
unction should obviously be transmitted force, the
denominator is not quite as obvious. It certainly should be
a measurement of applied disturbance, either force or
acceleration, so that the transfer function provides a
measure of the transmitted load resulting from an
application of a force or acceleration.

The choice of which metric to use depends on whether
the disturbance is best modeled by a displacement or force
source. The classification between disturbance sources is
summarized in terms of driving point impedance of the
structure at the mounting location. If the structural driving
point impedance is significant compared to that of the
machine, (ie the effective modal mass of the structure is
significant compared the mass of the machine, M) a force
source results in a model that resembles physical reality.
Otherwise, a displacement source yields a more accurate
model. The assumption of a non-tnvial plant implies that
the driving point impedance of the structure is significant
and a force source be used. However, under closed loop
conditions, an active mount has the effect of reducing this
{)mp;dgnce to the point that a displacement source would

e 1deal.

The solution chosen in this study is to measure both
possibleJerformance functions. Performance is
determined by measuring the transfer functions between 1)



transmitted force and acceleration measured above the
mount, Pfa, and 2) transmitted force and applied force
(measured above the mount, Pf. These frequency response
functions are measured under open and closed loop
conditions, with a spectrally white signal sent to the
shaker. Finally a %uantitative measurement of

erformance i3 ogtaine by calculating the difference
Between the open and closed loop magnitudes of the
respective functions.

One unavoidable draw back of using these functions
is that pole locations are different between Pfa, Pff, and
the plant transfer function. Redeemingly, however, these
are ideal functions for performance measurement.

4.3 Classical Compensator Results

The following data were taken with the compensator
natural frequency at 846 Hz and a damping ratio of 0.54%.
Here, the nearest plant pole is at 877 Hz. Typical open
and closed loop performance functions for this tuning are
plotted in Figs. 18 and 19.
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Typical Force Performance Function (w¢ < wp)

The closed loop data was collected with the loop
gain increased so that the closed loop system was on the
edge of instability. We can see from Fig. 12 that using Pfr
as the performance metric, a maximum performance of 25
dB is achieved at the compensator natural frequency.
Using Pfa as a performance metric (Fig. 13), a maximum
performance of 22 dB is realized at the same frequency.
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Figure 19
Typical Acceleration Performance Function (¢ < wp)

In both performance functions, an increase in
relative transmitted force is seen above and below the
disturbance frequency. The closed loop transfer function
has a zero at the disturbance frequency. The open loop
poles move away from this closed loop zero to the
neighboring open loop zeros, above and below the notch.
Thus the observed increased force transmission above and
below the notch result from the loop poles which move
toward open loop zeros with increasing gain.

Maximum performance is plotted against
compensator damping ratio in Fig. 20. Note the trend
toward infinite performance for a compensator damping
ratio of zero. This is because loop gain at the frequency of
interest tends toward infinity for zero compensator
damping. As compensator damping is increased, peak
gerformance drops. This decrease is rapid for low dampin

ecause the rate at which the maximum gain of a secon
order pole decreases with respect to damping ratio is:

d(PeakGain ) -
d(50) Zﬁi (24)

-

Because performance is proportional to gain, it behaves
similarly such that as damping ratio is increased, the
decrease in performance becomes more gradual.
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Figure 20
Performance vs Damping Ratio (w¢ < wp)

The ﬁ:in at which instability occurs is plotted in
Fig. 21. is plot has two distinct regions. For low
compensator damping, the adjacent plant pole causes
instability. As compensator damping is increased, local
pole zero overlap is also increased. This is realized by the
plant pole as added gain margin and appears in Fig. 21 as
a greater gain required to cause instability. As the
compensator pole is moved further to the left in the s-plane,
it provides enough phase margin at the neighboring plant
pofe to prevent its instability and a new higher frequency

lant pole becomes responsible for instability. The curve
ﬁattens because the incremental increase in phase margin
ig smaller at this higher frequency pole.
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Maximum Gain vs. Compensator Damping Ratio (w¢ < wp)

Performance vs compensator damping for the
compensator tuned to 900 Hz, which is above the plant
pole, is shown in Fig. 22. With the lightly damped
compensator tuned above the plant pole, performance is
low. When it is close to the jw axis, it takes only very
slight loop gain to push the compensator pole into the right
ha%f plane. As compensator damping is increased, more
gain is tolerated by the closed loop_system. This is
realized as increasing performance in Fig. 22. When the
damping is increased enough that a plant pole causes
instability, the curve takes on the characteristic of
decreasing performance with increasing damping ratio,
similar to the curve of Fig.14. This transition takes place
at a compensator damping ratio of 0.2%, which is also the
plant damping ratio. At this point, plant poles and
compensator poles are equally far from the jw axis and
require approximately the same amount of gain to move
into the right half plane. As compensator damping is
increased, the plant pole becomes decisively responsible
for instability. This supports the stability-performance
conclusion of section 2.6 that compensator damping should
be set to that of the plant.
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Figure 22
Performance vs Damping Ratio (¢ > @p)

4.4 ency Following Compensator Results

The self tuning compensator was tested for tracking
performance. The real part of the conjugate poles, a, of the
compensator was kept constant at 9 Hz. Recall that the
imaginary part of these poles is set by the frequency of a
reference signal. A sinusoid with varying frequency was
used as the disturbance and reference for the compensator.
Frequency was increased from 800 to 1000 Hz at a rate of
about 250 Hz/sec,

Open and closed loop time measurements of
transmitted load are shown in Figs. 23 and 24. At t=0.8
sec., where the disturbance frequency is about 877 Hz, the

lant resonance at 877 Hz is clearly visible in the open
oop time response. The absence of this resonance in the
closed loop response indicates good performance.
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Open Loop Load Measurement
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Closed Loop Load Measurement

The performance functions in Figs. 25 and 26 were
obtained by computing Pff and Pfa using the ramped-
frequency signal as a disturbance.
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Figure 25
Open and Closed Loop Pff for Ramped Frequency
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Open and Closed Loop Pfa for Ramped Frequency

5 Conclusions

The intent of this research was to consider active
control possibilities for isolating two flexible structures
from one another when the model of one or both of the
structures is known with too little fidelity to permit model-
based control design. The basic problem is to perform
robustly stable, active narrow band isclation of a noisy
machine from a flexible structure. The research resulted in
a number of results applicable to different facets of
structural control and vibration isolation.

Typically structural control design is done using
sensor-actuator pairs that are dual and collocated. This is
due to the phase bounds guaranteed for the plant transfer
function. We proposed using a collocated sensor-actuator

air that is not dual. It was proven that the same phase
Eounds, characteristic of dual-collocated sensing and
actuating, exist for the nondual pair proposed in Section 2.
The resulting plant takes the form of two zeros at the
origin of the s-plane, with an alternating pole-zero pattern
which bounds the phase between 0 and 180°. This
characteristic is guaranteed for any generic structure and
machine.

Two different narrow-band compensation schermnes,
exploiting knowledge of the disturbance spectrum were

roposed. The analysis was done assuming a very limited
Enowledge of plant dynamics. It was shown both
theoretically and experimentally that controller
performance is :lptimal when structure has high modal
overlap -- optimal in the sense that good performance can
be achieved and the controller is robust to sensor and
actuator lags.

Some conclusions that can be extrapolated from this
result regarding high modal overlap. It can be inferred
that a structure need not have %igh modal overlap
everywhere for guaranteed high performance. The structure
needs high modal overlap only in the bandwidth of the
compensator since the compensator is designed to have
negligible dynamic effect at other frequencies. This
property could be useful in choosing robust operating
frequencies of the mounted machine. The obvious choice
would be to operate in a region where modal overlap is
high. This is a novel approach since typically regions of
high modal overlap are avoided for state-space control
design since they are difficult to model. ’?he authors
believe that these properties are applicable to more
complicated systems. High modal overlap help the
stability-robustness properties of broadband control
schemes and other narrow band control schemes since it
forces stricter bounds on the phase excursions of the plant
transfer function.
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